iBAT Instituts-Gesellschaft für Betriebs- und Arbeitstechnik des Tischlerhandwerks mbH

Heidering 29 30625 Hannover Tel. 0511-26275-75, -77 Fax 0511-627075-13 info@ibat-hannover.de www.ibat-hannover.de

iBAT-Fachinformation 2010-06-22:

Ermittlung des Wärmedurchgangskoeffizienten für Holzfenster und Fenstertüren (Uw-Wert)

Der U-Wert gibt an, welcher Wärmestrom (in Watt; W) bei einem Temperaturunterschied von 1°C (in Kelvin ausgedrückt; K) pro Quadratmeter (m²) eines Bauteiles fließt ("Wärmeverlust"); seine Einheit lautet deshalb W/m²K. Der U-Wert eines Fensters setzt sich aus den spezifischen U-Werten des Rahmen und des Glases zusammen, die beim vereinfachten Berechnungsverfahren nach DIN EN ISO 10077-1 entsprechend ihrer Flächanteile gewichtet werden. Zusätzlich ist der Einfluss des längenbezogenen Wärmedurchgangskoeffizienten Ψ_g in W/mK (Psi-Wert) zu berücksichtigen, der die Wärmeleitung aus der Wechselwirkung von Rahmen, Glas und Abstandhalter berücksichtigt. Das bringt auch die nebenstehende Formel (1) nach DIN EN ISO 10077-1 zum Ausdruck.

Möglichkeiten der Uw-Wertermittlung

- Ablesen aus Tabellen der DIN EN ISO 10077-1:
 - Tabelle F.1 für normale Abstandhalter und 30 % Rahmenanteil
 - Tabelle F.2 für normale Abstandhalter und 20 % Rahmenanteil
 - Tabelle F.3 für verbesserte Abstandhalter und 30 % R ahmenanteil
 - Tabelle F.4 für verbesserte Abstandhalter und 20 % Rahmenanteil
- Vereinfachte Berechnung mit Formel 1 nach DIN EN ISO 10077-1
- Numerische Berechnung nach DIN EN ISO 10077-2
- Messung mit dem Heizkastenverfahren nach EN ISO 12567-1 Alle abgelesenen, berechneten und gemessenen Werte beziehen sich auf ein Blendrahmenaußenmaß von 1,23 m · 1,48 m, wie unter Punkt 5.1 in DIN V 4108-4 beschrieben und mittels "Richtlinie Fenster und Fenstertüren" durch die Bauregelliste bauaufsichtlich festgelegt.

1. Ermittlung U_f-Wert Rahmen

- Ablesen aus Diagramm D.2 nach DIN EN ISO 10077-1

 - IV 68 aus einer Holzart mit ca. 700 kg/m³: U_f = 2,1 W/m²K
 IV 68 aus einer Holzart mit ca. 500 kg/m³: U_f = 1,8 W/m²K
 - Dieses Verfahren liefert aber nur relativ schlechte Werte
- Numerische Berechnung nach DIN EN ISO 10077-2 von Rahmen mit einer thermisch getrennten WSS; Quelle: PfB / fenster marke tischler

 IV 68 aus einer Holzart mit ca. 700 kg/m³: U_f = 1,8 W/m²K

 IV 68 aus einer Holzart mit ca. 500 kg/m³: U_f = 1,4 W/m²K

 - IV 78 $U_{f700 kg} = 1,6$ bzw. $U_{f500 kg} = 1,3$ W/m²K
- Messung mit dem Heizkastenverfahren nach DIN EN 12412-2

2. Ermittlung U_{q} -Wert Verglasung

- Berechnung nach DIN EN 673 (Herstellerangabe)
- Messung nach DIN EN 674 oder EN 675 (Herstellerangabe)
- Ablesen aus Tabelle C.2 nach DIN EN ISO 10077-1
- Berechnung mit Formel 6 nach DIN EN ISO 10777-1

3. Ermittlung Ψ_q -Wert Glas-Rahmen-Verbindungsbereich

- Numerische Berechnung nach DIN EN ISO 10077-2
- Ablesen aus Tabelle E.2 nach DIN EN ISO 10077-1 für Holz- oder Kunststoffrahmen:
 - mit Abstandhaltern aus Aluminium oder Stahl
 - Ψ_a = 0,08 W/mK für Zwei- oder Drei-Scheibenverglasung, beschichtet, mit Luft oder Gas im SZR
 - mit wärmetechnisch verbesserten Abstandhaltern
 - $\Psi_q = 0.06 \text{ W/mK}$ für Zwei- oder Drei-Scheibenverglasung, beschichtet, mit Luft oder Gas im SZR
- Datenblätter für Fenster-Ψ-Werte; Quelle: Arbeitskreis Warme Kante www.bundesverband-flachglas.de > Der Werkstoff Glas > Download

Beispiel

Rahmen: $U_f = 1.4 \text{ W/m}^2 \text{K}$

Verglasung: $U_g = 1.0 \text{ W/m}^2 \text{K}$ mit Beschichtung und Gasfüllung Wärmetechnisch verbesserter Abstandhalter: $\psi_g = 0.06 \text{ W/mK}$

Abmessung: 1,23 m · 1,48 m = 1,820 m² = A_W

Glasfläche: $A_g = 1,144 \text{ m}^2$; Rahmenfläche $A_f = 0,676 \text{ m}^2$ Sichtbare Umfangslänge der Verglasung: $l_g = 4,422 \text{ m}$

Uw-Wertermittlung mit Formel 1 nach DIN EN ISO 10077-1: $U_{w} = \frac{1,144 \text{ m}^{2} \cdot 1,0 \text{ W/m}^{2} \text{K} + 0,676 \text{ m}^{2} \cdot 1,4 \text{ W/m}^{2} \text{K} + 4,422 \text{ m} \cdot 0,06 \text{ W/mK}}{1.00 \text{ m}^{2} \text{K} + 0,676 \text{ m}^{2} \cdot 1,4 \text{ W/m}^{2} \text{K} + 4,422 \text{ m} \cdot 0,06 \text{ W/mK}}$

1,820 m²

Ergebnis: $U_w = 1,294 \text{ W/m}^2 \text{K}$ ist aufzurunden auf $U_w = 1,30 \text{ W/m}^2 \text{K}$

Formel (1) nach DIN EN ISO 10077-1:

$$U_{w} = \frac{A_g \cdot U_g + A_f \cdot U_f + I_g \cdot \Psi_g}{A_g + A_f}$$

- Wärmedurchgangskoeffizient des gesamten Fensters in W/m²K (w für window)
- verglaste Fläche in m² (g für glazing)
- Wärmedurchgangskoeffizient der Verglasung in W/m²K (*g* für *glazing*)
- Ansichtsfläche des Rahmens in m² (f für frame)
- Uf Wärmedurchgangskoeffizient des Rahmens in W/m²K (f für frame)
- sichtbare Umfangslänge der Glasscheibe in m längenbezogener Wärmedurchgangskoeffizient in W/mK (griechisches Psi; g für glazing)
- Gesamtfläche des Fenster in m²; $A_w = A_g + A_f$

Auszug Tabelle F.1 DIN EN ISO 10077-1:2006 Wärmedurchgangskoeffizienten für vertikale Fenster mit einem Flächenanteil des Rahmens von 30 % und mit Abstandhaltern aus Aluminium oder Stahl; Ablesebeispiel $U_g = 1.1 \text{ W/m}^2\text{K}$ und $U_f = 1.4 \text{ W/m}^2\text{K}$ ergibt $U_w = 1.4 \text{ W/m}^2 \text{K}$

U _f in W/m ² K	0,8	1,0	1,2	1,4	1,6	1,8	2,0	2,2		
U_g in W/m ² K	<i>U</i> _w in W/m²K									
1,4	1,4	1,5	1,5	1,6	1,7	1,7	1,8	1,9		
1,3	1,3	1,4	1,5	1,5	1,6	1,6	1,7	1,8		
1,2	1,3	1,3	1,4	1,5	1,5	1,6	1,6	1,8		
1,1	1,2	1,3	1,3	1,4	1,4	1,5	1,6	1,7		
1,0	1,1	1,2	1,3	1,3	1,4	1,4	1,5	1,6		
0,9	1,1	1,1	1,2	1,2	1,3	1,4	1,4	1,6		
0,8	1,0	1,1	1,1	1,2	1,2	1,3	1,4	1,5		
0,7	0,9	1,0	1,0	1,1	1,2	1,2	1,3	1,4		
0,6	0,9	0,9	1,0	1,0	1,1	1,2	1,2	1,4		

Auszug Tabelle F.3 DIN EN ISO 10077-1:2006 Wärmedurchgangskoeffizienten wie oben, aber mit verbesserten Abstandhaltern; Ablesebeispiel U_g = 1,1 W/m²K und $U_f = 1,4$ W/m²K ergibt $U_w = 1,3$ W/m²K

U _f in W/m ² K	0,8	1,0	1,2	1,4	1,6	1,8	2,0	2,2				
U_g in W/m 2 K	<i>U_w</i> in W/m²K											
1,4	1,4	1,4	1,5	1,5	1,6	1,7	1,7	1,8				
1,3	1,3	1,4	1,4	1,5	1,5	1,6	1,7	1,8				
1,2	1,2	1,3	1,3	1,4	1,5	1,5	1,6	1,7				
1,1	1,2	1,2	1,3	1,3	1,4	1,5	1,5	1,6				
1,0	1,1	1,1	1,2	1,3	1,3	1,4	1,4	1,6				
0,9	1,0	1,1	1,1	1,2	1,3	1,3	1,4	1,5				
0,8	0,9	1,0	1,1	1,1	1,2	1,2	1,3	1,4				
0,7	0,9	0,9	1,0	1,1	1,1	1,2	1,2	1,3				
0,6	0,8	0,9	0,9	1,0	1,0	1,1	1,2	1,3				

Weitere Hinweise enthält die DIN V 4108-4, das Merkblatt ES.01 "Die richtigen U-Werte von Fenstern", Ausgabe 2009-2 (Herausgeber: Verband der Fensterund Fassadenhersteller e.V. VFF; www.window.de) und die Ergänzung zur Produktnorm DIN EN 14351-1:2006+A1:2010 Anhang J (normativ). Danach sind Sprossen folgendermaßen bei den aus Tabellen abgelesenen Uw-Werten zu berücksichtigen:

- glasteilende echte Sprossen ∆U_w = + 0,4 W/m²K
- mehrfaches Sprossenkreuz im SZR + 0,2 W/m²K
- $+ 0,1 \text{ W/m}^2\text{K}$ einfaches Sprossenkreuz im SZR
- auf das Glas aufgesetzte Sprossen $0.0 \text{ W/m}^2\text{K}$